Así como un agujero negro impide que las ondas luminosas escapen de su influencia, los agujeros negros sónicos son capaces de absorber las ondas sonoras.
A pesar de su corta duración, los autores de este trabajo creen que los
agujeros negros sónicos podría ser una excelente herramienta para
observar y estudiar un análogo de la radiación de Hawking, una clase de radiación que se cree seria emitida por los agujeros negros “de toda la vida” pero cuya existencia a resultado -hasta hoy- muy difícil de demostrar. El agujero en cuestión se basa en un condensado Bose-Einstein
compuesto por un centenar de miles de átomos de rubidio que fueron
desacelerados a su estado cuántico más bajo mediante una trampa
magnética. Este grupo de átomos fríos actúa como un único objeto
macroscópico -similar al superfotón creado en la Universidad de Bonn- pero con algunas propiedades típicas de la mecánica cuántica.
Lograr esta hazaña no fue fácil, y fue necesario resolver problemas
bastante complejos, como encontrar la forma de acelerar partes del
condensado a velocidades supersónicas para crear diferentes regiones en
su interior. Se utilizó un láser de gran diámetro para crear un serie de
“escalones” de potencial, logrando que cuando el condensado
Bose-Einstein cruza estas zonas, se acelera hasta velocidades
supersónicas. Los científicos demostraron que el condensado podría
acelerarse más de un orden de magnitud que la velocidad del sonido.
"La mayor importancia de nuestro trabajo es que hemos logrado superar la velocidad crítica Landau, que establece que el flujo no puede exceder la velocidad del sonido", explica Jeff Steinhauer, uno de los coautores del trabajo. "Nuestro experimento supera este límite, al menos durante un período finito de tiempo." En esta configuración, el límite entre las regiones supersónicas y subsónicas actúa como si fuese el horizonte de eventos de un agujero negro. En la frontera de este horizonte de sucesos la velocidad del flujo del condensado es exactamente igual a la velocidad del sonido. En el lado supersónico de la barrera, la densidad del condensado es mucho menor que en el lado subsónico. Como explicaron los científicos, a una baja densidad le corresponde a una velocidad de flujo más alta, debido a la conservación de la masa. En los experimentos se demostró que el horizonte de eventos de este agujero negro sónico era estable durante aproximadamente 20 milisegundos. Transcurrido de ese plazo, las inestabilidades del sistema desmoronan el agujero. Sin embargo, en ese tiempo se ha podido demostrar que de la misma forma que un agujero negro atrapa fotones, la región supersónica del agujero negro sónico funciona como una eficiente trampa para las ondas de sonido y otras ondas, siempre que estén dentro del rango comprendido entre los 1,6 y 18 micrómetros. Las que poseen una longitud de onda mas corta puede escapar, y aquellas con longitudes de onda mayores no caben en la región supersónica del agujero.
Como decíamos, los científicos creen que pueden utilizar el nuevo agujero negro de sonido como modelo para estudiar la radiación de Hawking. El famoso físico Stephen Hawking predijo que un agujero negro puede emitir una pequeña cantidad de radiación térmica debido a efectos cuánticos. La pérdida de esta radiación puede causar que el agujero negro reduzca su tamaño, e incluso que -transcurrido el tiempo suficiente- se evapore por completo. Hasta hoy hemos sido poco hábiles para detectar esta radiación, pero este nuevo proyecto podría finalmente ayudarnos a comprobar su existencia.
"La mayor importancia de nuestro trabajo es que hemos logrado superar la velocidad crítica Landau, que establece que el flujo no puede exceder la velocidad del sonido", explica Jeff Steinhauer, uno de los coautores del trabajo. "Nuestro experimento supera este límite, al menos durante un período finito de tiempo." En esta configuración, el límite entre las regiones supersónicas y subsónicas actúa como si fuese el horizonte de eventos de un agujero negro. En la frontera de este horizonte de sucesos la velocidad del flujo del condensado es exactamente igual a la velocidad del sonido. En el lado supersónico de la barrera, la densidad del condensado es mucho menor que en el lado subsónico. Como explicaron los científicos, a una baja densidad le corresponde a una velocidad de flujo más alta, debido a la conservación de la masa. En los experimentos se demostró que el horizonte de eventos de este agujero negro sónico era estable durante aproximadamente 20 milisegundos. Transcurrido de ese plazo, las inestabilidades del sistema desmoronan el agujero. Sin embargo, en ese tiempo se ha podido demostrar que de la misma forma que un agujero negro atrapa fotones, la región supersónica del agujero negro sónico funciona como una eficiente trampa para las ondas de sonido y otras ondas, siempre que estén dentro del rango comprendido entre los 1,6 y 18 micrómetros. Las que poseen una longitud de onda mas corta puede escapar, y aquellas con longitudes de onda mayores no caben en la región supersónica del agujero.
Como decíamos, los científicos creen que pueden utilizar el nuevo agujero negro de sonido como modelo para estudiar la radiación de Hawking. El famoso físico Stephen Hawking predijo que un agujero negro puede emitir una pequeña cantidad de radiación térmica debido a efectos cuánticos. La pérdida de esta radiación puede causar que el agujero negro reduzca su tamaño, e incluso que -transcurrido el tiempo suficiente- se evapore por completo. Hasta hoy hemos sido poco hábiles para detectar esta radiación, pero este nuevo proyecto podría finalmente ayudarnos a comprobar su existencia.
Enlaces
Visto en
Physorg
No hay comentarios:
Publicar un comentario